miércoles, 3 de febrero de 2010

Historia de Torno y Taladro



03/02/2010 Simón Jiménez Gutiérrez 2 “E” MECANICA INDUSTRIAL
Historia de el Torno
Tornos antiguos



Jacques de Vaucanson, inventor de tornos.
Con la posibilidad de poder cilindrar y dar forma a diversos utensilios, instrumentos y piezas ornamentales de
madera y otros materiales, el hombre inventó y desarrolló el proceso de torneado.
El torno es una de las primeras máquinas inventadas remontándose su uso quizá al año 1000 y con certeza al
850 a. C. La imagen más antigua que se conserva de los primitivos tornos es un relieve hallado en la tumba de Petosiris, un sumo sacerdote egipcio que murió a fines del s. I. En 1250 nació el torno de pedal y pértiga flexible, que representó un gran avance sobre el accionado por arquillo, puesto que permitía dejar las manos del operario libres para manejar la herramienta. A comienzos del siglo XV se introdujo un sistema de transmisión por correa, que permitía usar el torno en rotación continua. A finales del siglo XV, Leonardo da Vinci trazó en su Códice Atlántico el boceto de varios tornos que no pudieron ser construidos entonces por falta de medios pero que sirvieron de orientación para futuros desarrollos.
Hacia 1480 el pedal fue combinado con un vástago y una biela. Con la aplicación de este mecanismo nació el torno de accionamiento continuo, lo que implicaba el uso de
biela-manivela, que debía ser combinada con un volante de inercia para superar los puntos muertos.
Se inició el mecanizado de metales no férreos, como latón, cobre y bronce y, con la introducción de algunas mejoras, este torno se siguió utilizando durante varios siglos. En la primitiva estructura de madera se introdujeron elementos de
fundición, tales como la rueda, los soportes del eje principal, contrapunto, apoyo de herramientas y, hacia el año 1586, el mandril [2] (una pieza metálica, cilíndrica, en donde se fija el objeto a tornear)
Tornos mecánicos


Torno paralelo de 1911
Al comenzar la
Revolución industrial en Inglaterra, durante el siglo XVII, se desarrollaron tornos capaces de dar forma a una pieza metálica. El desarrollo del torno pesado industrial para metales en el siglo XVIII hizo posible la producción en serie de piezas de precisión.
En la década de 1780 el inventor francés
Jacques de Vaucanson construyó un torno industrial con un portaherramientas deslizante que se hacía avanzar mediante un tornillo manual. Hacia 1797 el inventor británico Henry Maudslay y el inventor estadounidense David Wilkinson mejoraron este torno conectando el portaherramientas deslizante con el 'husillo', que es la parte del torno que hace girar la pieza trabajada. Esta mejora permitió hacer avanzar la herramienta de corte a una velocidad constante. En 1820, el mecánico estadounidense Thomas Blanchard inventó un torno en el que una rueda palpadora seguía el contorno de un patrón para una caja de fusil y guiaba la herramienta cortante para tornear una caja idéntica al patrón, dando así inicio a lo que se conoce como torno copiador.
El
torno revólver, desarrollado durante la década de 1840, incorpora un portaherramientas giratorio que soporta varias herramientas al mismo tiempo. En un torno revólver puede cambiarse de herramienta con sólo girar el portaherramientas y fijarlo en la posición deseada. Hacia finales del siglo XIX se desarrollaron tornos de revólver automáticos para cambiar las herramientas de forma automática. En 1833, Joseph Whitworth se instaló por su cuenta en Manchester. Sus diseños y realizaciones influyeron de manera fundamental en otros fabricantes de la época. En 1839 patentó un torno paralelo para cilindrar y roscar con bancada de guías planas y carro transversal automático, que tuvo una gran aceptación. Dos tornos que llevan incorporados elementos de sus patentes se conservan en la actualidad. Uno de ellos, construido en 1843, se conserva en el "Science Museum" de Londres. El otro, construido en 1850, se conserva en el "Birmingham Museum".
Fue
J.G. Bodmer quien en 1839 tuvo la idea de construir tornos verticales. A finales del siglo XIX, este tipo de tornos eran fabricados en distintos tamaños y pesos. El diseño y patente en 1890 de la caja de Norton, incorporada a los tornos paralelos, dio solución al cambio manual de engranajes para fijar los pasos de las piezas a roscar.
Introducción del Control Numérico

Torno moderno de control numérico.
El
torno de control numérico es un ejemplo de automatización programable. Se diseñó para adaptar las variaciones en la configuración de los productos. Su principal aplicación se centra en volúmenes de producción medios de piezas sencillas y en volúmenes de produccíón medios y bajos de piezas complejas. Uno de los ejemplos más importantes de automatización programable es el control numérico en la fabricación de partes metálicas. El control numérico (CN) es una forma de automatización programable en la cual el equipo de procesado se controla a través de números, letras y otros símbolos. Estos números, letras y símbolos están codificados en un formato apropiado para definir un programa de instrucciones para desarrollar una tarea concreta. Cuando la tarea en cuestión cambia, se cambia el programa de instrucciones. La capacidad de cambiar el programa hace que el CN sea apropiado para volúmenes de producción bajos o medios, dado que es más fácil escribir nuevos programas que realizar cambios en los equipos de procesado.
El primer desarrollo en el área del control numérico lo realizó el inventor norteamericano
John T. Parsons (Detroit 1913-2007), junto con su empleado Frank L. Stulen, en la década de 1940. El concepto de control numérico implicaba el uso de datos en un sistema de referencia para definir las superficies de contorno de las hélices de un helicóptero. La aplicación del control numérico abarca gran variedad de procesos. Se dividen las aplicaciones en dos categorías:
Aplicaciones con máquina herramienta, tales como el taladrado, laminado, torneado, etc.
Aplicaciones sin máquina herramienta, tales como el ensamblaje, trazado e inspección.
El principio de operación común de todas las aplicaciones del control numérico es el control de la posición relativa de una herramienta o elemento de procesado con respecto al objeto a procesar.









Historia

Taladro de mano o berbiquí.
El precursor del taladrado fue probablemente el molinillo de hacer fuego. Consistía en una varilla cilíndrica de
madera, cuyo sistema de giro fue desarrollándose progresivamente, primero accionando con las palmas de las manos, después mediante un cordel arrollado a la varilla del que se tiraba alternativamente de sus extremos, según figura en un grabado egipcio de 1440 a. C.
Un procedimiento muy antiguo para taladrar
piedra, según un bajorrelieve egipcio de 2700 a. C. consistía en un robusto eje que llevaba inserto una punta de pedernal para taladrar y en la parte superior un mango para facilitar el giro y la incorporación de dos macetas para regular el giro.
Con el descubrimiento del arco de violín se produjo un adelanto para conseguir el movimiento de giro. El sistema consiste en arrollar una cuerda, al eje porta brocas, atada por sus extremos a un arco de madera, que con el impulso de la mano del hombre, hace girar la pieza en movimiento de vaivén.
Taladro columna antiguo
Otro sistema muy utilizado fue el berbiquí de cuerda, que consiste en un eje porta herramienta de madera que lleva incorporado un
volante de inercia. A dicho eje se arrolla una cuerda atada por sus extremos a un travesaño que impulsado por la mano del hombre se consigue un giro alternativo.
El antiguo
berbiquí de carpintero construido de madera, fue evolucionando en el tiempo. El berbiquí de eje porta herramientas de acero roscado, lleva incorporado en dicho eje una cabeza giratoria con un alojamiento cuadrado, donde se acopla la broca y un carrete tuerca, produciéndose un giro de vaivén, cuando se ejerce una presión longitudinal.
El berbiquí de giro continuo representa un avance sobre el anterior, lográndose el giro mediante el roscado en el eje porta brocas, de dos filetes
helicoidales en sentido contrario, incorporándose en un extremo del carrete, una tuerca a izquierdas y en el opuesto otro a derechas.
El berbiquí de giro continuo, construido por Heyerhoff accionado por manivela y juego de
engranajes representó un importante avance. Se construyeron taladros de sobremesa accionados manualmente con manivela y versiones de regulador de bolas y juego de engranajes. A partir del siglo XV, se utiliza la energía hidráulica para taladrar gruesos troncos de madera destinados a diversos fines, entre otros a tuberías para conducir el agua. A finales del siglo XV, Leonardo da Vinci diseña un taladro horizontal para taladros profundos. [1]
John Wilkinson en 1775 construyó, por encargo de Watt, una mandrinadora más avanzada técnicamente y de mayor precisión, accionada igual que las anteriores por medio de una rueda hidráulica. Con esta máquina, equipada con un ingenioso cabezal giratorio y desplazable, se consiguió un error máximo: “del espesor de una moneda de seis peniques en un diámetro de 72 pulgadas”, tolerancia muy grosera pero suficiente para garantizar el ajuste y hermetismo entre pistón y cilindro.
Ante la necesidad de taladrar piezas de
acero, cada vez más gruesas, Nasmyth fue el primero que construyó hacia 1838, un taladro de sobremesa totalmente metálico, con giro de eje portabrocas accionado a mano o por transmisión. Algunos años después, en 1850, Whitworth fabricó el primer taladro de columna accionado por transmisión a correa y giro del eje porta brocas, a través de un juego de engranajes cónicos. Llevaba una mesa porta piezas regulables verticalmente mediante el sistema de piñón cremallera. En 1860 se produce un acontecimiento muy importante para el taladrado, al inventar el suizo Martignon la broca helicoidal. El uso de estas brocas se generalizó rápidamente, puesto que representaba un gran avance en producción y duración de la herramienta con relación a las brocas punta de lanza utilizada hasta la citada fecha.
La necesidad de taladrar piezas pesadas y voluminosas dio lugar a la construcción de un taladro radial por Sharp, Roberts & Co, hacia el año
1851. A partir de 1898, con el descubrimiento del acero rápido por parte de Taylor y White, se fabrican nuevas herramientas con las que se triplica la velocidad periférica de corte, aumentando la capacidad de desprendimiento de viruta, del orden de siete veces, utilizando máquinas adaptadas a las nuevas circunstancias.
El sistema de generación polifásico de
Tesla en 1887 hizo posible la disponibilidad de la electricidad para usos industriales, consolidándose como una nueva fuente de energía capaz de garantizar el formidable desarrollo industrial del siglo XX. Aparece justo en el momento preciso, cuando las fuentes de energía del siglo XIX se manifiestan insuficientes. Los motores de corriente continua fabricados a pequeña escala, y los de corriente alterna, reciben un gran impulso a principios de siglo, reemplazando a las máquinas de vapor y a las turbinas que accionaban hasta ese momento las transmisiones de los talleres industriales. Poco después, muy lenta pero progresivamente, se acoplan directamente de forma individualizada a la máquina-herramienta.
La exigencia de calidad y la fuerte evolución productiva del automóvil contribuyeron al desarrollo de la máquina-herramienta, la
metrología y la aplicación de los procedimientos de fabricación en serie. La fabricación de piezas intercambiables aumenta constantemente, y se hace necesario mejorar las prestaciones de matricería y utillaje. Para dar respuesta al problema, el ingeniero suizo Perrenond Jacot diseña y fabrica una punteadora vertical con mesa de coordenadas polares, en la que se ejecutan operaciones con una precisión jamás lograda hasta entonces.
En 1908
Henry Ford fabrica el primer automóvil producido en serie, modelo T, y en 1911 instala el primer transportador en cadena en Highland Park, iniciando la producción en masa. Se perfeccionan una gran cantidad de máquinas-herramienta adaptadas a las características exigidas por la industria del automóvil.
Desde principios del
siglo XX hasta el nacimiento del control numérico (CN) e incluso después, se mantienen prácticamente en todas las máquinas las formas arquitectónicas que, en este sentido, alcanzaron su plenitud a finales del siglo XIX. Sin embargo evolucionaron y se construyeron otras más potentes, rígidas, automáticas y precisas, pudiendo alcanzar mayores velocidades de giro, con la incorporación a los cabezales de cojinetes o rodamientos de bolas; contribuyendo rentablemente al extraordinario incremento de productividad logrado por la industria en general y en especial por la automovilística y aeronáutica.
Esta evolución fue debida fundamentalmente, por un lado, al descubrimiento de nuevas herramientas de corte como: carburo de silicio, acero rápido y, a partir de
1926, se produce otro avance importante con el descubrimiento por parte de la empresa alemana Krupp del carburo cementado metal duro, presentado en la feria de Leipzig en 1927 con la denominación de Widia. Por otro lado se registra la automatización de diversos movimientos mediante la aplicación de motores eléctricos, sistemas hidráulicos, neumáticos y eléctricos.
A partir de
1925 en Estados Unidos las revistas especializadas tratan de las unidades autónomas de mecanizado y nace la noción de transferencia de las piezas a mecanizar. Teniendo en cuenta que, salvo algunas excepciones, todas las operaciones de mecanizado que combinan la rotación de una herramienta con un movimiento de avance se pueden realizar con estas unidades; se ha descubierto la máquina ideal para que, dispuesta en línea, pueda realizar distintas operaciones mediante transferencia de la pieza a mecanizar. A partir del año 1945 las fábricas de automóviles utilizan de manera generalizada máquinas transfer, compuestas de unidades autónomas, en el mecanizado de bloques y culatas.
La
electrónica -y la informática que está soportada por la primera- han provocado una nueva revolución industrial. El punto de partida hay que situarlo en 1945, cuando dos científicos de la Universidad de Pennsilvanya, John W. Manclhy y J. Presper Ecker crearon la primera computadora electrónica digital que ha funcionado realmente en el mundo. Se denominó ENAC, era voluminosa, consumía mucha energía y era difícil de programar, pero funcionaba.
En 1948,
John T. Parsons inicia la aplicación del control numérico a la máquina-herramienta, con el objeto de resolver el problema del fresado de superficies complejas tridimensionales para la aeronáutica. En 1949 Parson contrató con el Instituto Tecnológico de Massachussets el diseño de los servomecanismos de control para una fresadora. En 1952 funcionaba un control experimental, aplicado a una fresadora Cincinnati. La programación utilizaba un código binario sobre cinta perforada, y la máquina ejecutaba movimientos simultáneos coordinados sobre tres ejes. En 1955 se presentan unas pocas máquinas en la Feria de Chicago, gobernadas por tarjetas y cintas perforadas La U.S. Air Force se interesa por el sistema y formula un pedido de 170 máquinas-herramienta por valor de cincuenta millones de dólares, beneficiándose del mismo varios prestigiosos fabricantes americanos. Pero los modelos desarrollados durante los años cincuenta y sesenta fueron poco eficaces y resultaron muy caros.
Fue a partir de la década de 1960, con el desarrollo de la
microelectrónica, cuando el CN pasa a ser (CNC) por la integración de una computadora en el sistema. Pero definitivamente fue durante los años ochenta cuando se produce la aplicación generalizada del CNC, debido al desarrollo de la electrónica y la informática, provocando una revolución donde en 2007 todavía estamos inmersos.





















































































































































































No hay comentarios:

Publicar un comentario en la entrada